ERL-BASED ELECTRON-ION COLLIDERS

Vadim Ptitsyn
Collider-Accelerator Department
BNL

Lepton-nucleon scattering

- Deep Inelastic Scattering (DIS) of electron, muon and neutrino beams on nucleons (fixed targets) has been a vital scientific exploration tool for several decades.
- Experiments at SLAC (late 60s) led to the quark-parton model of nucleons, and ultimately to establishing QCD theory.
- Numerous DIS experiments in 70-80s uncovered the momentum and spin distribution of quark constituents of proton and neutron

HERA (1991-2007): first electron-proton collider

Higher CME -> reach to the momentum

distribution of quark and gluons at very low
momentum fraction (x)

Selection of physics results:

- precise data on details of the proton structure
- the discovery of very high density of sea quarks and gluons present in the proton at low-x
- detailed data on electro-weak electronquark interactions
- \triangleright precision tests of QCD (α_s measurements)

From HERA to future colliders colliders

HERA

Polarized e⁻,e⁺ (27.5 GeV) Unpolarized protons (920 GeV) Peak luminosity: 5 · 10³¹ cm⁻² s⁻¹ Much higher luminosity: 10^{33} - 10^{34} cm⁻² s⁻¹

Polarized protons and light ions (in addition to polarized electrons)

Heavy ion beams

Different (and variable) Center-of-Mass Energy range

Major physics objectives of future

electron-ion colliders

Mapping the gluon content of ions and protons;
High-density gluon state

3-dimensional imaging of the nucleons

Spatial and Momentum
Structure of the Nucleus

Electron-ion colliders

Searches and the understanding of new physics (GUT, LQs, Higgs,)

Probing the nucleon's spin structure

5/22/12 ERL 2015

Electron-Hadron Collider Designs

Ring-ring

	Center of Mass Energy	On the base of
LHeC ring-ring	1.3 TeV	LHC (CERN)
MEIC	15-65 (140) GeV	CEBAF (JLab)
e-HIAF	12 GeV	HIAF (IMP)

Linac-ring ERL-based

	Center of Mass Energy	On the base of
LHeC linac-ring	1.3 (2) TeV	LHC (CERN)
eRHIC	20-145 GeV	RHIC (BNL)

- -Overcoming the electron beam-beam limit
- -Spin transparency

Energy Recovery Linacs have to be used for high luminosity in CW mode

5/22/12 ERL 2015

Large Hadron electron Collider at CERN

60 GeV (e) x 7 TeV (p)

- Protons/ions from LHC
- 0.5 Gev injector
- A pair of SCRF linacs with energy gain 10 GeV per pass
- Six 180° arcs, each arc 1 km radius
- Re-accelerating stations to compensate energy lost by SR
- Switching stations at the beginning and end of each linac
- Matching optics
- Extraction dump at 0.5 GeV

Large Hadron electron Collider at

iopscience.org/jphysg

IOP Publishing

ns from LHC

iector

CRF linacs with energy
V per pass

rcs, each arc 1 km radius

rating stations to te energy lost by SR

stations at the beginning each linac

ptics

dump at 0.5 GeV

eRHIC at BNL

Add an electron accelerator to the existing \$2.5B RHIC including existing RHIC tunnel, detector buildings and cryo facility

Luminosity:
10³³ – 10³⁴ cm⁻² s⁻¹

Light ions (d, Si, Cu)
Heavy ions (Au, U)
10 - 100 (110*) GeV/u

Pol. light ions (He-3)
17 - 167 (184*) GeV/u

- Center-of-mass energy range: 20 145 GeV
- Full electron polarization at all energies
 Full proton and He-3 polarization with six Siberian snakes
- Any polarization direction in electron-hadron collisions:

^{*} It is possible to increase RHIC ring energy by 10%

ERL-based eRHIC

Parameter Table

Devementere	eRHIC		LHeC	
Parameters	е	р	е	р
Energy (GeV)	15.9	250	60	7000
Bunch spacing (ns)	106		25	
Intensity, 10 ¹¹	0.07	3.0	0.01	1.7
Current (mA)	10	415	6.4	860
rms norm. emit. (mm-mrad)	23	0.2	50	3.75
β _{x/y} * (cm)	5	5	12	10
rms bunch length (cm)	0.4	5	0.06	7.6
IP rms spot size (μ m)	6.	.1	7.	.2
Beam-beam parameter		0.004		0.0001
Disruption parameter	36		6	
Polarization, %	80	70	90	None
Luminosity, 10 ³³ cm ⁻² s ⁻¹	3.	.3	1.	.3

Technological challenges

- High intensity (6 50 mA) polarized electron source
- High power ERL with multiple recirculations (high current SRF cavities, machine protection, MBBU, ...)
- Strong cooling of hadron beams (eRHIC)
- Low hadron β* interaction region
- Crab-crossing (eRHIC)
- Beam-beam effects
- Techniques for intense e⁺ beam (LHeC)

Polarized e-source: BNL Gatling Gun

Prototype has been built. Initial tests with 2 cathodes

Ultimate goal: 2.5 mA/cathode, 50 mA total

En,x : 2.0503541e-005
4e-005
4e-005
-0.52956
-0.2
0
0.2
0.4
0.6
0.8
1
1.12724
1.524

First beam detected by the YAG screen.

High current SRF cavities

LHeC: 802 MHz cavity and cryomodule development.

CERN-JLab-Mainz Collaboration

Parameter	Value
n_{cell}	5
V_{acc}	18 MV
f_0	801.58 MHz
W	131 J
aperture Ø	75 mm
equator Ø	347 mm
R/Q	462 Ω
G	276Ω
E_{peak}	41 MV/m
B_{peak}	86 mT
$P_{diss}\Big _{2K}$	< 28 W

eRHIC: 422 MHz cavity Designed prototype:

Largest total beam current: 700 mA (for 9.3 GeV top electron energy)

HOM power must be effectively damped:

LHeC: ~200 W

eRHIC: ~8 kW (in worst case)

Multipass Beam Break-Up

Multipass beam-breakup thresholds for 16 pass operation (simulation results)

$\Delta f/f (rms)$	Current Threshold (mA)
0	53
5e-4	95
1e-3	137
3e-2	225
1e-2	329

FFAG recirculation passes

- eRHIC uses two FFAG beamlines to do multiple recirculations.
 - (FFAG-I: 1.3-5.4 GeV, FFAG-II: 6.6-21.2 GeV)
- All sections of a FFAG beamline is formed using a same FODO cell. Required bending in different sections is arranged by proper selection of the offsets between cell magnets (or, alternatively, with dipole field correctors).
- Permanent magnets can used for the FFAG beamline magnets (no need for power supplies/cables and cooling).

Advanced Cooling for eRHIC ion beam

High energy, high density ion beam need cooling with high band-width. Coherent electron cooling: 10¹³-10¹⁷ Hz
PoP CeC experiment in 2016-2017 RHIC runs.

Classic - FEL amplifier (V.Litvinenko, Ya.Derbenev)

Micro-bunching instability amplifier (D.Ratner)

Kicker

Beam-Beam Effect in Linac-Ring Scheme

Since using ERL:

Beam quality must be acceptable for deceleration.

Halo formation by due to electron beam disruption by the beam-beam interaction should be moderate.

Other specific beam-beam effects of linac-ring scheme:

- -Kink instability of hadron beam
- -Heating of protons by electron parameter (orbit offset, intensity, emittance) fluctuations.

The effects are being studied by simulations and experimentally.

IR design

Using HERA and B-factories experience to resolve IR design issues:

- ➤ Strong beam focusing
- ➤ Fast separation (avoiding parasitic beam-beam)
- ➤ Managing synchrotron radiation fan (absorbers, masks; precise orbit control; protection of SC magnets)
- ➤ Detector integration (*Large acceptance; Large magnet apertures for propagation of the collision products*)
- ➤ Correction of chromatic effects

ERL SCRF facility at CERN

Test facility for SCRF cavities and modules

D.Pellegrini's Plenary talk

- > Test facility for multi-pass multiple cavity ERL
- Injector studies: DC gun or SRF gun
- Study reliability issues, operational issues
- Vacuum studies related to FCC
- > Possible use for detector development, experiments and injector suggests ~1 GeV as final stage energy
- Test facility for controlled SC magnet quench tests
- > Could it be foreseen as the injector to LHeC ERL and to FCC?

TARGET PARAMETER*	VALUE
Injection Energy [MeV]	5
Final Beam Energy [MeV]	900
Normalized emittance γε _{x.v} [μm]	50
Beam Current [mA]	10
Bunch Spacing [ns]	25 (50)
Passes	3

*in few stages

Conceptual Design Study is underway

Cornell-BNL FFAG-ERL Test Facility (Cβ)

- NS-FFAG arcs, four passes (similar to first eRHIC loop)
- Momentum aperture of x4, as for eRHIC
- Uses Cornell DC gun, injector (ICM), dump, 70MeV SRF CW Linac
- Prototyping of essential components of eRHIC design

G.Hoffstaetter's Plenary talk

Also, possible ERL-related experiments for eRHIC are under consideration in JLab. (Sattelite meeting, Thursday morning, Lecture Hall 1)

DOE NP Facilities and possible eRHIC schedule

Summary

- ERL technology provides a pathway for a highluminosity electron-ion collider
- ERL-based EIC designs have been developed in CERN (LHeC) and BNL (eRHIC)
- Several R&D projects are underway to address the technological challenges for an ERL-based collider
- ERL test facilities are planned in order to verify related technologies

